Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Moscow Univ Biol Sci Bull ; 77(4): 251-257, 2022.
Article in English | MEDLINE | ID: covidwho-2267502

ABSTRACT

The SARS-CoV-2 is rapidly evolving and new mutations are being reported from different parts of the world. In this study, we investigated the variations occurring in the nucleocapsid phosphoprotein (N-protein) of SARS-CoV-2 from India. We used several in silico prediction tools to characterise N-protein including IEDB webserver for B cell epitope prediction, Vaxijen 2.0 and AllergenFP v.1.0 for antigenicity and allergenicity prediction of epitopes, CLUSTAL Omega for mutation identification and PONDR webserver for disorder prediction, PROVEAN score for protein function and iMutantsuite for protein stability prediction. Our results show that 81 mutations have occurred in this protein among Indian SARS-CoV-2 isolates. Subsequently, we characterized the N-protein epitopes to identify seven most promising peptides. We mapped these mutations with seven N-protein epitopes to identify the loss of antigenicity in two of them, suggesting that the mutations occurring in the SARS-CoV-2 genome contribute to the alteration in the properties of epitopes. Altogether, our data strongly indicates that N-protein is gaining several mutations in its B cell epitope regions that might alter protein function.

2.
Front Microbiol ; 13: 856913, 2022.
Article in English | MEDLINE | ID: covidwho-2032801

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India. The viral isolates were adapted to in vitro cultures and further characterized to identify strain-specific variations in viral growth characteristics. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government-run vaccine drive in India. The major goal was to isolate and adapt SARS-CoV-2 viruses in cell culture with minimum modifications to facilitate research activities involved in the understanding of the molecular virology, host-virus interactions, drug discovery, and animal challenge models that eventually contribute toward the development of reliable therapeutics.

3.
Int J Infect Dis ; 104: 491-500, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1074770

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the whole world, including Odisha, a state in eastern India. Many people have migrated to the state from different countries as well as other states during this SARS-CoV-2 pandemic. The aim of this study was to analyse the receptor-binding domain (RBD) sequence of the spike protein from isolates collected from throat swab samples of COVID-19-positive patients and further to assess the RBD affinity for angiotensin-converting enzyme 2 (ACE2) of different species, including humans. METHODS: Whole-genome sequencing for 35 clinical SARS-CoV-2 isolates from COVID-19-positive patients was performed by ARTIC amplicon-based sequencing. Sequence analysis and phylogenetic analysis were performed for the spike region and the RBD region of all isolates. The interaction between the RBD and ACE2 of five different species was also analysed. RESULTS: The spike region of 32 isolates showed one or multiple alterations in nucleotide bases in comparison with the Wuhan reference strain. One of the identified mutations, at position 1204 (Ref A, RMRC 22 C), in the RBD coding region of the spike protein showed stronger binding affinity for human ACE2. Furthermore, RBDs of all the Indian isolates showed binding affinity for ACE2 of different species. CONCLUSION: As mutant RBD showed stronger interaction with human ACE2, it could potentially result in higher infectivity. The binding affinity of the RBDs for ACE2 of all five species studied suggests that the virus can infect a wide variety of animals, which could also act as natural reservoir for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/genetics , Sequence Analysis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Whole Genome Sequencing , Animals , Binding Sites , Humans , India/epidemiology , Mutation , Phylogeny , Protein Binding , Protein Domains
4.
JMIR Bioinform Biotech ; 1(1): e20735, 2020.
Article in English | MEDLINE | ID: covidwho-791479

ABSTRACT

BACKGROUND: The RNA genome of the emerging novel coronavirus is rapidly mutating, and its human-to-human transmission rate is increasing. Hence, temporal dissection of their evolutionary dynamics, the nature of variations among different strains, and understanding the single nucleotide polymorphisms in the endemic settings are crucial. Delineating the heterogeneous genomic constellations of this novel virus will help us understand its complex behavior in a particular geographical region. OBJECTIVE: This is a comprehensive analysis of 95 Indian SARS-CoV-2 genome sequences available from the Global Initiative on Sharing All Influenza Data (GISAID) repository during the first 6 months of 2020 (January through June). Evolutionary dynamics, gene-specific phylogeny, and the emergence of the novel coevolving mutations in 9 structural and nonstructural genes among circulating SARS-CoV-2 strains across 12 different Indian states were analyzed. METHODS: A total of 95 SARS-CoV-2 nucleotide sequences submitted from India were downloaded from the GISAID database. Molecular Evolutionary Genetics Analysis, version X software was used to construct the 9 phylogenetic dendrograms based on nucleotide sequences of the SARS-CoV-2 genes. Analyses of the coevolving mutations were done in comparison to the prototype SARS-CoV-2 from Wuhan, China. The secondary structure of the RNA-dependent RNA polymerase/nonstructural protein NSP12 was predicted with respect to the novel A97V mutation. RESULTS: Phylogenetic analyses revealed the evolution of "genome-type clusters" and adaptive selection of "L"-type SARS-CoV-2 strains with genetic closeness to the bat severe acute respiratory syndrome-like coronaviruses. These strains were distant to pangolin or Middle East respiratory syndrome-related coronavirus strains. With regard to the novel coevolving mutations, 2 groups have been seen circulating in India at present, the "major group" (66/95, 69.4%) and the "minor group" (21/95, 22.1%) , harboring 4 and 5 coexisting mutations, respectively. The "major group" mutations fall in the A2a clade. All the minor group mutations, except 11083G>T (L37F, NSP6 gene), were unique to the Indian isolates. CONCLUSIONS: This study highlights the rapidly evolving SARS-CoV-2 virus and the cocirculation of multiple clades and subclades. This comprehensive study is a potential resource for monitoring the novel mutations in the viral genome, interpreting changes in viral pathogenesis, and designing vaccines or other therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL